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Some of the basic methods used in inferential statistics 

LINEAR MODELS 

A. Linear regression 

- lm() 

- basic case: one continuous independent variable (e.g. age) predicting the other continuous 

dependent variable (e.g. voice pitch) 

- how much change is caused in the dependent variable by an amount of change in the 

predictor variable? 

- BUT keep in mind: basically all the models below (t-test, ANOVA) which test the effect of 

one categorical dependent variable are linear regression models as well, in which you 

compare differences between group means (expressed in slopes) to 0 (different  

difference between groups) 

- for this reason each test may be executed in an ANOVA approach (the model is the group 

means compared to the grand mean) and in a linear regression approach (with intercept(s) 

and regression slopes) 

- A general note to ANOVA models:  

i. Type I sums of squares: the order of predictors entered into the model matters 

(effects evaluated after each other) 

ii. Type III sums of squares (default in aov()): the order of predictors does not matter 

(forced entry: all effects evaluated at the same time)  to do this: model = aov(libido 

~ partnerLibido + dose) and then run Anova(model, Type =”III”) (Anova() is in car 

package) 

iii. Type III sums of squares: main effects evaluated first (interactions second) – requires 

orthogonal contrasts! 

 

B. Parametric tests for comparing groups (group means)  
- for comparing data from normally distributed sampling frequencies (tested on distribution 

of scores) or more than minimally 30 items in a sample (from which we can assume normal 

distribution of sampling frequencies) – watch out! not always groups scores must be 

normally distributed (see e.g., paired sample t-test where the differences of scores must be 

normally distributed) 

- in metrical data (which has a dimension, e.g. Hz, ms, °C), minimally interval scale 

- these all are actually linear regression models, so they can be modeled as an ANOVA (e.g. 

aov()) or a linear regression model (lm()) with intercept being one group mean (the 

baseline) and the slopes (b) being the differences between group means 

 

A guide to how ANOVAs (ANalysis Of VAriance) are named:  

I. 

n-way    independent/repeated measures/mixed  ANOVA 

number of independent var.s  design (how variables are measured)  “ANOVA” 

     between-group/within-group/mixed design 
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II. 

univariate      / multivariate   ANOVA 

ANOVA      / MANOVA 

one measured outcome (dependent) var.  / more dependent var.s(=MANOVA) 

 

Effect size measures – shows how much variance in the data can be accounted for by the 

independent variables we included in the model: 

r2: see below at Pearson’s r 

η2 : (basically r2): the proportion of total variance explained by an effect (effect / total variance) 

partial η2: it looks at the proportion of variance that a variable explains that is not explained by 

other variables in the analysis (effect / effect+ residual) 

ω2: only if we have equal number of participants in each group 

 

I. Independent samples 

- 1 group and e.g., an assumed population mean (or zero) (“is the mean different from…?”) 

-  one-sample t-test (t, p)1 : t.test() 

 

- 2 groups: 1 predictor variable with 2 levels and 1 outcome variable: 

-  t-test for comparing 2 group means (t, p) : t.test() 

Assumptions:  

1. independence 

2. normal distribution of the group scores (actually normal distribution of 

sampling distribution!): Shapiro-Wilk test : shapiro.test() 

3. homogenity of variances: Levene’s test  only matters if you have unequal 

group sizes : car package : levene.test() 

violation of the assumption of homogenity of variances (significant result) use 

Welch’s test (parametric but without this assumption)  

violation of the assumption of normality (significant result)  go to the non-

parametric tests! 

-  one-way independent design analysis of variance (ANOVA or general linear model 1, 

a.k.a. GLM 1): for comparing 2 or more group means (actually generalized t-test, and 

both of them are actually cases of linear regression) (F(df1, df2), p)2 

Assumptions: 

1. independence 

2. normal distribution of the group scores: Shapiro-Wilk test 

3. homogenity of variances: Levene’s test 

violation of assumptions (significant result)  go to the non-parametric tests! 

 

- 2 or more groups case #1: 1 predictor variable with 2 or more levels; and 1 outcome 

variable: one-way independent design analysis of variance (ANOVA or GLM 1) (F(df1, 

df2), p, preferably also effects size: ω2) 

                                                           
1
 After each test name parameters to be reported in the publication are listed in brackets (in the order as they 

should be reported). 
2
 df = degrees of freedom 
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Assumptions: 

1. independence 

2. normal distribution of the group scores: Shapiro-Wilk test 

3. homogenity of variances: Levene’s test 

 violation of assumptions  go to the non-parametric tests! 

 

- 2 or more groups case #2: 1 predictor variable with 2 or more levels; 1 outcome variable; 

and 1 covariate: ANCOVA (or GLM 2) (F, (df01, df2), p, partial η2) 

- to adjust eg., for the effect of age (covariate) 

- if the covariate and the independent variables are independent 

 

Additional assumption (compared to ANOVA):  

- homogeneity of regression slopes (i.e., no interaction between covariate and 

predictor) 

 

- 2 or more groups case #3: more than 1 (n) predictor variable with 2 or more levels, and 1 

outcome variable: n-way or independent factorial design ANOVA (GLM 3): several 

independent variables or predictors and each has been measured using different entities 

(between groups) – outcome: main effects and interaction of predictors (F(df1, df2), p, ω2) 

gogglesModel<-aov(attractiveness ~ gender + alcohol + gender:alcohol, data = 

gogglesData)  

OR 

gogglesModel<-aov(attractiveness ~ alcohol*gender, data = gogglesData) # this 

includes interaction as well! 

 

Assumptions: 

1. independence 

2. normal distribution of the group scores: Shapiro-Wilk test 

3. homogenity of variances: Levene’s test 

violation of assumptions (significant result)  go to the non-parametric tests! 

 

Post hoc tests: 

4. Bonferroni  

5. Tukey HSD 

 

- 2 or more groups case #4: 1 predictor variable with 2 or more levels; and more than 1 

outcome variable: one-way multivariate independent design MANOVA 

informs us of whether groups of participants can be distinguished by a combination 

of scores on several dependent measures 

- Words of warning: “In circumstances where there is a good theoretical basis 

for including some but not all of your dependent variables, you should run 

separate analyses: one for the variables being tested on a heuristic basis and 

one for the theoretically meaningful variables. The point to take on board 

here is not to include lots of dependent variables in a MANOVA just because 

you have measured them.” 
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- e.g, we could compare a group of OCD sufferers after CBT and after behaviour 

therapy (BT) with a group of OCD sufferers who are still awaiting treatment (a 

no-treatment condition, NT). 

- idea: we want to calculate underlying linear dimensions of the dependent 

variables. These linear combinations of the dependent variables are known as 

variates (or sometimes called latent variables or factors). In this context we 

wish to use these linear variates to predict which group a person belongs to 

(i.e., whether they were given CBT, BT or no treatment), so we are using them 

to discriminate groups of people. Therefore, these variates are called 

discriminant functions or discriminant function variates. 

 

Assumptions 

1. independence 

2. random sampling 

3. multivariate normality (we assume that the dependent variables (collectively) 

have multivariate normality within groups) mshapiro.test() in mvnormtest 

package 

1. homogeneity of covariance matrices (assumption of homogeneity of 

variances AND that the correlation between any two dependent 

variables is the same in all groups) by(ocdData[, 2:3], 

ocdData$Group, cov) 

2. MANOVA is not robust for unequal sample sizes: if the larger group 

provides higher variance-covariance the p value should not be 

trusted! 

violation of assumptions  go to the robust MANOVA! 

- Main model: 

1. ocdModel<-manova(outcome ~ Group, data = ocdData) where 

2. outcome<-cbind(ocdData$Actions, ocdData$Thoughts) 

- Follow up analysis 

1. multiple univariate ANOVAs (with maybe Bonferroni correction) 

followed by 

2. contrasts  

OR rather (also!) do  

3. discriminant function analysis newModel<-lda(Group ~ Predictor(s), 

data = dataFrame, prior = prior probabilities, na.action = "na.omit") 

where Groups is the groups you try to discriminate and Predictors 

are the continuous variable(s), e.g.: ocdDFA<-lda(Group ~ Actions + 

Thoughts, data = ocdData) 

 

II. Dependent samples 

- 2 groups: 1 predictor variable with 2 levels and 1 outcome variable 

-  dependent samples t-test 
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Assumptions:  

a. normal distribution of the group score differences (actually normal 

distribution of sampling distribution differences!): Shapiro-Wilk test for score 

differences 

b. homogenity of variances: Levene’s test  only matters if you have unequal 

group sizes 

violation of assumptions (significant result)  go to the non-parametric tests! 

 

- one-way repeated measures ANOVA (GLM 4) 

see below… 

 

- 2 or more groups case #1: 1 predictor variable with 2 or more levels; and 1 outcome 

variable: one-way repeated-measures ANOVA (GLM 4) (ANOVA approach: F(df1, df2), p, 

η2 or r for planned comparisons, Mauchly’s: (χ2, p) corrections: (ε); multilevel approach: 

(χ2, p)) 

ANOVA approach: ezANOVA() (similar output to SPSS, Mauchly included, corrections 

included) or aov() 

linear regression approach: lm(), lme()  preferred to ANOVA approach, as these work 

with linear regression, and you don’t have to be worried about Mauchly’s! 

reporting: 

multilevel model: (chi2(df), p) 

traditional ANOVA approach (e.g., ezANOVA(): (F(df1, df2), p) 

 

1. linear regression (multilevel) approach: 

GENERALLY: newModel <-lme(outcome ~ predictor(s), random = random effects, 

data = dataFrame, method = "ML") where ML: maximum-likelihood 

EXAMPLE:  

baseline<-lme(Retch ~ 1, random = ~1|Participant/Animal, data = longBush, 

method = "ML") 

bushModel<-lme(Retch ~ Animal, random = ~1|Participant/Animal, data = long-

Bush, method = "ML") 

and then:  

anova(baseline, bushModel) 

Further:  

summary(bushModel) 

 

2. ANOVA approach: 

bushModel<-aov(Retch ~ Animal + Error(Participant/Animal), data = longBush) 

 

Assumptions (if not treated as lme regression but an ANOVA as in ezANOVA()): 

a. instead of homogeneity of variances we have the assumption of sphericity 

(testable if we have minimum 3 groups): if the difference of the treatment 

levels is equal in variance Mauchly’s test (non-significant  sphericity is met 
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What to do if 

b. sphericity is violated: 

i. when estimates of sphericity are greater than .75 the Huynh–Feldt 

correction should be used 

ii. otherwise: Greenhouse-Geisser correction should be reported 

c. sphericity is NOT violated:  

i. just check the main ANOVA results 

 

Post hoc tests 

not needed if contrast are used as in regression, but in the ANOVA approach: 

d. if shpericity is NOT violated: Tukey 

e.  if sphericity is violated: Bonferroni 

 

- 2 or more groups case #2: more than 1 predictor variable with 2 or more levels; and 1 

outcome variable: n-way (or factorial) repeated-measures ANOVA: several independent 

variables or predictors and each has been measured using different entities (between 

groups) (F(df1, df2), p, r for planned comparisons) 

baseline model:  

baseline<-lme(attitude ~ 1, random = ~1|participant/drink/imagery, data = 

longAttitude, method = "ML") 

 

adding the first variable: 

drinkModel<-lme(attitude ~ drink, random = ~1|participant/drink/imagery, data = 

longAttitude, method = "ML") 

OR: 

drinkModel<-update(baseline, .~. + drink) 

THEN add imagery: 

imageryModel<-update(drinkModel, .~. + imagery) 

THEN add interaction: 

attitudeModel<-update(imageryModel, .~. + drink:imagery) 

 

Comparison: 

anova(baseline, drinkModel, imageryModel, attitudeModel) 

 

Further: 

summary(drinkModel) 

 

 

III. Mixed designs (GLM 5) 

several independent variables or predictors have been measured; some have been measured 

with different entities, whereas others were measured using the same entities 

- these minimally have 2 independent variables: one measured in a within, and one in a 

between subject design – i.e., not every combination exists in one subject 
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- strong suggestion: never use more than 3 independent variables if possible! it yields too 

many interactions (v1:v2, v2:v3, v1:v3, v1:v2:v3) and contrasts (all of the levels combined 

yield minimally 96 pairs!), and you die analyzing them eventually 

- Begin by interpreting the highest-order effect (i.e., the significant interaction that contains 

the most predictors). You should not interpret any lower order effects contained within 

that interaction (not even main effect). 

- Basic method:  

- choosing contrasts 

- compute main model 

- compute contrasts  or  post hoc tests 

 

1. Mixed design ANOVA approach (F(df1, df2), p) — ezANOVA()  

Assumptions (if not treated as lme regression but e.g. ezANOVA()): 

1. the assumption of sphericity must be met in repeated measures variables (and 

the corresponding interaction terms) if ANOVA approach is used: Mauchly’s 

test (non-significant)  sphericity is met 

 

2. Multilevel model (linear mixed model) approach (chi2, p) for contrasts: (p, t(df), p) 

i. has the advantages that (1) we don’t need to concern ourselves with sphericity, 

and (2) we can now break down these very complicated effects by looking at the 

model parameters (which reflect the contrasts that we used to code the 

predictor variables) 

ii. here you add variables and interactions to the model hierarchically and see if 

the model gets better 

iii. begin by interpreting the highest-order effect ad go no further down 

 

IV. Correlations and coefficients 

to see if 2 variables change together, but causality is not assumed (no predictor variable is 

determined) 

main idea: if the two variables “move together” (e.g., number of ads seen in telly are in a 

connection with number of chocolates eaten) the scores in the two variable have the same 

variance = their standardized covariance (covariance is not (score−mean)squared/n−1 but 

(scorea−meana)×(scoreb−meanb)/n−1) is close to −1 or +1 

 

1. Pearson’s r (bivariate) 

2. Partial correlation: if some of the variance explained in variable A by variable B is not 

unique to variable B (but may be accounted for also by variable C which we held 

constant in this comparison)  variable C is held constant, i.e., is controlled for in the 

comparison (see SPSS: “Analyze >Correlate > Partial > Controlling for:”) 

 

Cohen’s suggestion for the interpretation of r: 

r = 0,10  small effect (kis hatás): A hatás a teljes variancia (0,12 × 100 = ) 1%-át* magyarázza. 

r = 0,30  medium effect (közepes hatás): A hatás a teljes variancia (0,32 × 100 =) 9%-át* 

magyarázza. 
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r = 0,50  large effect (erős/nagy hatás): A hatás a teljes variancia (0,52 × 100 =) 25%-át* 

magyarázza. 

 

r2: determinációs együttható: Azt mutatja meg, hogy az egyik változó varianciája mennyit 

magyaráz meg a másik változó varianciájából. 

 

(0,32 × 100 =) 9%-át magyarázza, míg a maradék 91%-ot más változók magyarázzák! 

A hatás irányát nem mondja ki! 

 

szignifikancia (p értelmezése):  

A korrelációelemzésben azt is teszteljük (H1), hogy a kapott érték szignifikánsan eltér-e 0-tól 

(azaz a „nincs összefüggés”(H0)-től). 

p < 0,05 jelentése itt: a korreláció valóban létezik (5%-nál kevesebb az esélye, hogy ezt az 

értéket kaptam volna, ha a hatás nem létezik). 

 

C. Non-parametric tests for comparing groups (group means) 
- in ordinal data (e.g. Likert scale measures) 

- when the criterion of normal distribution of sampling frequency (as tested on sample 

scores) is NOT met 

 

I. Independent samples 

1. 2 groups 

a. Mann-Whitney U test (Z, p) 

b. Wilcoxon rank-sum test (W, p) 

2. more than 2 groups 

a. Kruskal-Wallis rank sum test (H(df) or chi2(df), p) 

post hoc 

1.  several Wilcoxon rank-sum tests (with correction?) 

2. or sg that is very similar to friedmanmc() ?? 

 

II. Dependent samples 

1. 2 groups:  

a. Wilcoxon signed rank-test (p (median is good and effects size is preferred)) 

2. 2 ore more groups 

a. Friedmann’s ANOVA (chi2 or χ2F, p) 

 

post hoc: 

1. friedmanmc() (difference=) 

 

III. Mixed design 

1. ?? 

 

IV. Correlations and coefficients: 

1. Spearman’s rho (ρ) (bivariate) 
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2. Kendall’s tau (τ) (bivariate) – should be used in smaller datasets (if number of tied 

ranks is large, i.e., many scores have the same rank)  no effect size (r2) may be 

calculated here! 

 

D. Categorical data  

Relationship between two categorical variables (and no continuous outcome variables), e.g. 

testing if food or affection as reward (1st var: food/affection) are more likely to make cats to 

learn to or not to learn to dance (2nd variable: yes/no) 

- 2 variables: Pearson’s chi square (χ2, p)  

Assumptions 

i. independecy (each person contributes to only one cell) 

- for small samples: Fisher’s exact test 

- more than 2 variables: loglinear analysis (e.g. animal (cat/dog) x training (yes/no) x 

dance (yes/no)) 

 

LOGISTIC REGRESSION 
- multiple regression 

- glm() – generalized linear model  the basic linear model generalized to other sorts of 

situations 

- Prediction of categorical outcome variables (e.g., voiced/unvioced) based on measured 

categorical (e.g., %ofVoicing, duration) or continuous (“is final position”) predictor variables 

- Idea: if the outcome is categorical, the assumption of linear relation between variables is 

violated  solution: transferring data using logarithmic transformation (it expresses the 

multiple linear regression equation in logarithmic terms. 

- In logistic regression not the value but the probability of one of the two categories is 

predicted (S-curve). 

- types: 

- binary logistic regression: When we are trying to predict membership of only two 

categorical outcomes  

- multinomial (or polychotomous) logistic regression: when we want to predict 

membership of more than two categories 

- assessing the fit of the model: log-likelihood (we expect small numbers reflecting a small 

amount of unexplained variation, just as in residual sum of squares RSS in linear regression) 

- deviance statistic: -2LL 

- comparing models: the likelihood ratio 

- assessing the contribution of predictors: z-statistic or (Wald statistic), which is basically 

identical to t-statistic (z = b/SE)) 

- Assumptions (for working examples see page 343 in Field): 

- linearity: a linear relationship between any continuous predictors and the logit of the 

outcome variable  test: by looking at whether the interaction term between the 

predictor and its log transformation is significant 

- independence of errors: the cases of data should not be related, for example, you 

cannot measure the same people at different points in time 
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- multicollinearity: predictors should not to be highly correlated  test with tolerance 

and VIF statistics, the eigenvalues of the scaled, uncentred cross-products matrix, the 

condition indices and the variance proportions 

- packages in R: car, mlogit 

- general form:  

newModel<-glm(outcome ~ predictor(s), data = dataFrame, family = name of a distribution, 

na.action = an action) 

where family is the name of a distribution (e.g., Gaussian, binomial, poisson, gamma), and 

binomial is used here, so: eelModel.1 <- glm(Cured ~ Intervention, data = eelData, family = 

binomial()) 

- start by adding 1 predictor at a time and see if it improves the fit of the model over the 

baseline using the  

- deviance statistic  it will decrease if the fit increases (and its associated chi2 

statistic shows if this improvement is significant) 

- and z-statistic it tells if the b coefficient (i.e. slope) of the predictor is significantly 

different from 0 

- or insert both (or all three…) predictors at the same time, and take a look at the z-statistic 

and its significance  

- use the odds ratio for interpretation exp(model$coefficients)  If the value is greater than 1 

then as the predictor increases, the odds of the outcome occurring increase (and vice versa) 

(BUT for this interpretation to be reliable the confidence interval of the odds ratio should not 

cross 1!) 

 

FACTOR ANALYSIS and PRINCIPAL COMPONENT ANALYSIS 

 

MULTILEVEL LINEAR MODELS a.k.a. MIXED MODELS  

(based here on Bodo Winter, see Field et al. 2012 in a separate txt) 
- why “mixed”: it has a fixed effect (predictor) and a random effect as well, the latter giving 

structure to the error term (the part of variance that is not explained by our predictor 

variable), e.g. subject to account for idiosyncratic variation (in repeated measures designs) – 

why random? because we only have a random sample of possible conditions, not all levels 

are present (not all kinds of clinics, not all kinds of personalities, etc.). 

- this actually means that there are different levels of variables which are nested in each other, 

e.g. tested children (i.e., the cases are level1) coming from different classrooms (level2) and 

the classes are also coming from different schools (level3) and the latter two are contextual 

variables, and in many cases subjects act as contextual variable (e.g., it depends on many 

internal factors how many items I remember, etc.) 

- two options: nlme package  lme() function OR lme4 package  lmer() function 

- Assumptions 

- homoscedasticity (equality of variances across the levels of the predictor) 

- which I must be misunderstanding, because Field states that heterogeneity of 

regression slopes is OK here (this will be the random slope term in the model).. 

hmm..? 

- normal distribution  
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- in random intercept case, the normal distribution of intercepts,  

- in random slopes case the normal distribution of random slopes 

- no independence is assumed  we can model this variance  by always including 

subject as a random effect! 

- can deal with some missing data and unbalanced designs 

- we must test all the levels of the fixed effect (cannot investigate e.g., “curiosity” by 

covering only the levels of “curious” and “somewhat curious”, we also have to 

include “indifferent”) 

- main model with random intercept (relationships are expected to be the same): 

- pitch ~ politeness + sex + (1|subject) + ε  

where 1|subject stands for having different intercept for each subject, that is, 

- we tell the model that we have multiple responses per subject (and also epr 

other variables denoted as random) and  

- we expect that within subjects (and other effects denoted as random) there 

will be some similarites – and between subjects there may be some variation 

- R: package lme4, function: lmer() OR package nlme and function lme 

- lmer(frequency ~ politeness + gender + (1|subject) + (1|scenario)) 

- getting statistical significance: likelihood ratio test 

- needs two models to be compared – one NOT containing the factor I am interested 

in (baseline), and one that does  

- baseline: politeness.null = lmer(frequency ~ gender + (1|subject) + (1|scenario), 

data=politeness, REML=FALSE) 

- model tested: politeness.model = lmer(frequency ~ attitude + gender + (1|subject) + 

(1|scenario), data=politeness, REML=FALSE) 

- likelihood ratio test: anova(politeness.null,politeness.model) 

 

- main model with interaction term:  

- lmer(frequency ~ attitude*gender + (1|subject) + (1|scenario), data=politeness) 

- likelihood ratio test with interaction 

- politeness.noint = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), 

data=politeness, REML=FALSE) 

- politeness.int = lmer(frequency ~ attitude*gender + (1|subject) + (1|scenario), 

data=politeness, REML=FALSE) 

- anova(politeness.noint,politeness.int) 

 

- BUT what if we also want to include that the effect of politeness may differ according to 

gender or scenario?  random slope model  where people are allowed to have different 

slopes for the effect of politeness (e.g. some lower their voices but others raise) 

- random slope model: this is what happens if we violate the homogeneity of regression 

slopes in ANCOVA – this assumes that regressions slopes are the same in all contexts 

(conditions)  if this is the case, we can use multilevel model to explicitly estimate that 

variability in slopes  this is unusual in itself, so:s 

- main model with random intercept and random slope:  

- politeness.model = lmer(frequency ~ attitude + gender + (1+attitude|subject) + 

(1+attitude|scenario), data=politeness, REML=FALSE) 
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- coef(politeness.model)   shows different coefs for politeness, but all are e.g., 

negative  

- chi2 likelihood ratio test: 

- politeness.null = lmer(frequency ~ gender + (1+attitude|subject) + 

(1+attitude|scenario), data=politeness, REML=FALSE) 

- anova(politeness.null,politeness.model) 

 

- writing up the results: 

- R citation 

- lme4()  found by citation(“lme”) 

- fixed effects of politeness and gender (with/without interaction term) 

- random effects: intercepts for subjects and items and random slopes for the effect of 

politeness  

- assumptions tested: homoscedasticity and normality  visual inspection 

- p-values obtained by likelihood ratio test of the full model with the effect in question 

against the model without the effect in question 

  

- growth curves (see MULTILEVEL_models.txt) 

- Growth models are multilevel models in which changes in an outcome over time are 

modelled using potential growth patterns (i.e. they are an extension to logistic 

regression). Patterns may be quadratic, cubic, logarithmic, exponential, or anything 

you like really. 

- The hierarchy in the data is that time points are nested within people (or other 

entities). As such, it’s a way of analysing repeated-measures data that have a 

hierarchical structure. 

- The anova() function can be used to compare the overall fit of hierarchical models. 

The resulting change in the log-likelihood and the significance of this change can be 

used to ascertain if the fit has been improved (a significant change equates to a 

significant improvement). The AIC and BIC can also be compared across models (but 

not significance tested). 

- The intervals() function can be used to get confidence intervals for model 

parameters. These intervals can tell us how much intercepts and slopes varied over 

our level 1 variable, and whether this variance is significant (if the interval does not 

cross zero, it is significant). 

- An autoregressive covariance structure, AR(1), is often assumed in time course data 

such as that in growth models. 

 

DEALING WITH OUTLIERS 

Keep in mind: „The consequences for the statistical model of applying the ‘wrong’ transformation 

could be worse than the consequences of analyzing the untransformed scores” 

 

E. Options to detect outliers 
- what you see in a boxplot as outlier: IQR x 1,5 

- if z-transformed score is greater/smaller than approx. 3/−3  

- if original score is greater than mean ± 3 SD (same as above) 
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F. Dealing with outliers and non-normal distributions 

- Remove the case: only if you have very good reasons to do so! 

- Transformation of the data (based on observed skewness) 

i. correction for positive skew or unequal variances – more common problems 

1. log transform 

2. square root transform 

3. reciprocal transformation 

ii. correction for negative skew  

1. reverse score transformation 

- Changing the score  

i. to the next highest score  

ii. replace ≥ 3.29 z scores by the mean + 3 SD 

iii. replace ≥ 3.29 z scores by the mean + 2 SD  


